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SUMMARY

A method has been developed to determine all
scattering parameters or their eigenvalues of a sym-
metrical three-port junction. Vector measurements
are reduced to reflection coefficient measurements
taken at one port. A versatile minicomputer control-
led system is presented for analyzing and optimizing
symmetrical junction circulators of any kind.

INTRODUCTION

Usually circulator design concentrates on optimi-
zing the magnitudes of the scattering parameters.
Phase information is not specified because phase is
difficult to measure. A complete knowledge of magni-
tudes and phases is, however, not only important for
applications with critical delay times, but allows
a better understanding of circulator operation and
simplifies design. The scattering parameters can be
converted to the scattering matrix eigenvalues.
These are the reflection coefficients for in-phase,
clockwise and counterclockwise rotating eigen-exci-
tations. The eigenvalues have a concrete physical
meaning, because they correspond to different eigen-
modes of the ferrite resonator. Knowing these eigen-
values enables one to match the phase slopes of the
3 resonant circuits. Another application is to iden-
tify spurious resonances.

Direct vector measurements of the scattering pa-
rameters is a cumbersome task, because monitoring
one reflection and two transmission coefficients re-
quires extensive RF switching. Another problem is to
find identical reference planes for transmission and
reflection coefficients, a basic requirement for
calculating consistent scattering matrix eigenvalues
Owen /1/ measured these eigenvalues by directly ge-
nerating the eigen-excitation using power splitters
and phase shifters. His measurement set-up requires
perfect symmetry and has to be balanced very care-
fully in order to achieve constancy in amplitude and
phase offsets (120°, 240°) at the three ports over
a larger bandwidth.

NEW MEASUREMENT TECHNIQUE

Our approach avoids these problems at RF because
phase measurements must only be done for one reflec-
tion coefficient with well-known terminations at the
other ports. The scattering parameters or their
eigenvalues are then evaluated by the computer which
controls the network analyzer. The scattering matrix
of a three-port with rotation symmetry is
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If ports 2 and 3 are terminated by Tz and FB'

the input reflection coefficient at port 1 reads
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A = 512 313 , B = 512 + 513'

With three sets of terminations T,, FB’ the un-
knows s, ., A, and B can be calculateg from the mea-
sured I Matched loads and shorts may be used as
terminations. The measurment for I = I'_ = 0 (Fig.
la) yields s directly. The other measurements are
made with one port matched and the other shorted
(Fig. lb) and with both ports shorted (Fig. lc). In-
terchanging ', and I', does not affect the input re-
flection, but may serve as a test for junction sym-
metry.

The set of linear equations (2) can be solved
for s.., A, B, With the above mentioned reflection
coefficients this results in

*11 = Tin(O’O)
Ae-a, TP s e s
B = (Fin(_l’_l) -8y [a - 511)2 - A] .
+ 2( 1 «+ Sll) A
Then 312 and 513 are given by
:12 = %t (%)2 - A%, S, = A/s 5. (38)
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One cannot distinguish between s and s 3 from
one-port measurements alone. The missing in%orma~
tion can, however, usually be taken from e.g. the
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direction of the circulation. The phase angles of

512 and 513 are unique except for multiples of 120°.

The S-matrix (1) can be converted to its eigen-
values

s0 1 1 1 Sll
- 2
s+ = |1 o o 312 . (4)
s 1 oZa s a = eJ1200
- 13 ’ -

without ambiguity. Their correspondence to the in-
dividual eigen-excitations remains, however, yet
undetermined. Physcially, reflection measurements
at one port lead to an equal excitation of the 3
eigenvectors. Hence a distinction of their indivi-
dual contribution to the reflected wave is not pos-
sible. Fortunately this is not a severe restric-
tion, because the in-phase eigenvalue can easily be
identified in practical cases. Reciprocal junctions
have degenerated rotating eigenmodes s, and s_. In
Junction circulators, splitting between the phases
of s and s depends on the bias field, whereas s
remains nearly unaffected. In the end, the succes-
sion of the eigenvalues is known from the sense of
circulation,

ADDITIONAL AMPLITUDE MEASUREMENT

Evaluating (3) for highly nonreciprocal junctions
such as circulators does not impose any problem;
the same holds for reciprocal devices, because s

= 513 may be set a priori.

Junctions with a small nonreciprocity,
detuned or weakly magnetized circulators,
culators at out-of-band frequencies, show s g &S
so that the difference in the square root 0% equ.
(3) becomes small. This means that measurement er-
rors are magnified with respect to the scattering
matrix elements until an interpretation is no longer
possible. A measurement technique for designing and
optimizing ecirculators should, however, work for
any junction.
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or cir-
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These problems have been solved by an additional
magnitude measurement of one transmission coeffi-
cient. This scalar value is read by the computer
simultaneously with the input reflection coeffici-
ents by means of a detector at one of the matched
loads. Port 3 being the monitored port, the trans-
mission parameter is

s + F2 (s 2. s s )

13 12 11 713
93 = 2 )
Loy I (o)) = sp 85 - (T4 Ty sy
Measuring |g3| for the cases ', = FB = 0 and
' = -1, F3 = 0 gives two additional equations for
determining s, _.
(0.9 for F% = P? = 0 yields |513|
| (O’O)|, and !g 1,0 | for ' = -1, T, = 0 leads
3 3 2 3
to
s )5 (-1,0))2 2 |k ’
. - = - ’ -
cos(3 ?y3 %) (fg3 | |513| 2 (6)
2 /x| s, |
35 Jjn a2
with 513 = |513|e , K = |K|e = - l+$11
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The terms in equ. (6) are not very sensitive to
measuring errors, in particular for the case of
weakly nonreciprocal junctions (s 5 ® S ) while
just the opposite holds for circu}ator Jjunctions.

Hence is is convenient to switch between the
methods of equ. (3) and equ. (6) depending on the
magnitudes of s 97 Sy Taking 0.1 as a limiting
value gives gooé resufts. It must be noted, that
equ. (6) has two solutions due to the ambiguity of
the areccos-function, apart from the above-mentioned
three-fold degeneracy. The correct root can be
chosen by a comparison with equ. (3), or by using
the fregquency dependence, because the S-parameters
and their eigenvalues must be continuous functions
over frequency.

MEASUREMENT SYSTEM

Fig. 2 shows a complete set-up for circulator
development. It consists of standard waveguide and
/ or cocaxial components. Reflection is measured by
a vector network analyzer (HP 8410 C), and trans-
mission to both ports is simultaneously registered
by a scalar analyzer (PM 1038). With this equip-
ment, the magnitudes of the scattering parameters
can be measured online. For phase measurements, a
minicomputer (HP 9816) controls the instruments.
The reflection coefficient measurements are correc-
ted by an 8-term error model. At least three cycles
are necessary (load/load; load/short; short/short).
The short circuits in the reference planes are
realized by movable shorting plates across the wave-
guide; in coaxial technique, SPDT-switches can be
used. For improved accuracy, the waveguides can be
shorted in a second plane about a quarter-wavelength
apart. These measurements give redundant informa-
tion, which is especially helpful near some singu-
lar points. The data can then be processed and dis-
played in various ways. e.g. switching between S
-parameters and eigenvalues or shifting the refe-
rence plane is possible.

RESULTS

Two examples shall demonstrate the potentials
of the method. First we examine a simple waveguide
H-plane junction circulator with quarter-wave step
transformers. Fig. 3a and c show the amplitudes of
the S-parameters in the unmagnetized and the magne-
tized state, respectively. Fig. 3b shows the eigen-
values of the unmagnetized junction referred to the
triangular boundary of the inner circulator. The
eigenvalues s = 1, s, =s_=-1 of the ideal pa-
rallel junction are modified by the transformer and
the ferrite disc. The extension of the junction and
the quarter-wave transformer lead to a dispersive
s_. The degenerate (rotating) eigenvalues s , s
approach the so—curve at the band edges, and run
through the low-Q El -resonance of the ferrite disc
between them. At 12.i GHz, a high-Q resonance is
seen. It is excited by the rotating eigenvalues s ,
s , and corresponds to a higher-order ferrite mode.
In Fig. 3d, the junction is biased for circulation.
S0 remains unaffected, the center frequency of the
s_ resonance decreases, that of s increases, so
that the 1200 phase shift required for circulation
is achieved. The slope of the s , s -eigenvalues is
matched to that of s , so that broadband behaviour
is achieved. The spufious resonance above the ope~-
ration band is split. The freguency corresponding



to the s eigenvalue has moved down, in the same di-

rection as the fundamental mode. This means that it
corresponds to a ferrite mode-with the same azimu-
thal index, probably with another height dependence.

The other example is a ferrite-loaded E-plane
waveguide junction. Without bias field, the juncti-
on shows stopbands at 10.3 and 12.2 GHz (Fig. 4a).

The eigenvalue diagram referred to the junction axis

(Fig. 4b), allows an interpretation. The ideal E
-plane junction has the eigenvalues s = -1, s =

s = 1. They are perturbed by two resonances. Kt
10.3 GHz, the rotating eigenvalues run through a
series resonance causing s = s, =s_= ~1, whereas
the upper stopband is caused by a parallel reso-
nance of the in-phase system (s_ = s, =s_ = 1).
Hence the lower resonance can be used for a reverse
-type circulation /2/ if s and s are split by
120°. This is shown in Fig. 4c, d. The amplitude
characteristic corresponds exactly with that pre-

=0

(0.0) (-1.0)
rin rin

dicted in /2/. The resonance at 12.2 GHz is not
affected by the bias field, because it is caused
by an angular independent mode.
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Fig. 1: Circuits for the three reflection
coefficient measurements
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c) Scattering parameters with magnetisation

Fig. 3: Waveguide forward type circulator (H-plane)
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c) Scattering pérameters with magnetisation

Fig. 4: Waveguide reverse type circulator (E-plane)
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d) Phase of eigenvalues with magnetisation
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d) Phase of eigenvalues with magnetisation



